Optimization of Logistics

Optimization of Logistics | f54b1fd487f59c75bb3499bc2f6f4e2

Optimization of Logistics

Optimization of Logistics
people buy dairy animals, keep them with themselves, milk them and get milk from them to serve their family and other villagers. The farmers used to feed the animals by themselves and early at that time, the number of animals not that much. However, as the world has started progressing towards industrialization, there was a need for such data as well. An urban conglomeration continues to be an ever increasing problem, routing in these settings has become an important area of operations research. The methods explored in this book are applicable for use by urban planners, environmental engineers and others interested in urban environments, as well as being presented on real-life cases. Performance evaluation tools (Petri nets, the Markov process, discrete event simulation, etc.) and optimization techniques (branch-and-bound, genetic algorithms, ant colony optimization, etc.) are presented first. Then, new optimization methods are presented to solve systems design problems, layout problems and buffer-sizing optimization. Forecasting methods, inventory optimization, packing problems, lot-sizing and sequencing problems, and scheduling problems are presented in this book. The final chapter presents an introduction to the optimization of logistics and supply chain systems, with a specific focus on logistics and supply chain management. This book presents a comprehensive guide to tackling similar issues in industrial settings, as well as providing readers with a comprehensive guide to tackling similar issues in industrial settings.
dynamic (CGE) models are introduced. As the demand for logistics depends mostly on the volume of trade and trade patterns, international trade affects the transport and logistics, as it might generate a higher or lower demand for transport and logistics services, which are calculated by various approaches of optimization studies. This book consists of six parts and twenty chapters. The first part of the book, which includes three chapters, is about introduction to optimization with typical base problems and algorithms for solving these problems. The second part of this book includes five my own researches in the application of optimization methods. The third part of the book shortly introduces you to the general concepts of the computable general equilibrium models (CGE) and presents you the fundamentals of a CGE model. In each chapter of the fourth part, short articles that include five simulations based on various scenarios are presented. The fifth part of the book briefly introduces you to the basic concepts of the computable general equilibrium models (CGE) and then, presents you the fundamentals of dynamic general equilibrium models. In each chapter of the sixth part, two short articles that simulate various scenarios are presented. All the chapters in this book are independent of each other. I hope you will find this book informative, beneficial and appropriate for your needs. This book is focused on finding solutions able to maximize logistic processes efficiency and reduce the impact of transportation on the environment at the same time. The main purposes of the research have been two: finding strategies and methodologies for the reduction of the standard container management complexity and the development of a model for the selection of the optimal container solution both from an economic and environmental perspective. The model has been implemented into a tool able to automate all the computations and evaluations. The outputs of the model/tool have been operationally validated using data obtained from the operations of an American and a European Car Maker Company. The results have illustrated the consistency with real industrial applications and the importance to use a multi-criteria decision making model, like the one developed, to select the optimal solution when the interaction of several parameters make it difficult to predict the overall result.